

fondazione banfi

SANGUIS JOVIS

ALTA SCUOLA DEL SANGIOVESE

Titolo della presentazione

L'interfaccia vite – vino: il significato della maturità nella selezione delle uve e nei processi di fermentazione

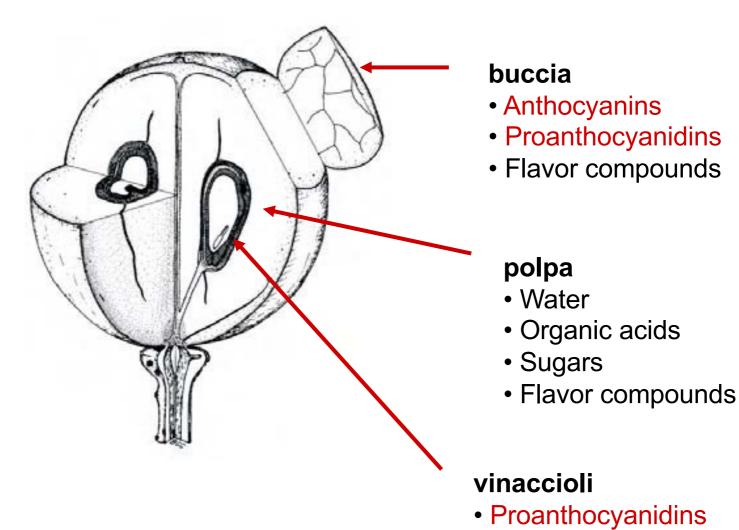
Vincenzo Gerbi – Università di Torino

TRE FASI DELL' ENOLOGIA ITALIANA NEGLI ULTIMI 50 ANNI

OBIETTIVI

 I Fase anni '50: Eliminare i i difetti e le alterazioni dei vini

- II Fase anni '70: Migliorare la stabilità e la conservabilità dei vini
- III Fase, dopo l'86: Enologia varietale e ricerca dell'eccellenza


Dopo il 1986 l'enologia correttiva lascia il posto all'enologia di espressione:

- L'attenzione della ricerca è spostata dal vino all'uva;
- Obiettivo è il trasferimento dei componenti nobili dell'uva nel vino e la loro conservazione nel tempo;

In **QUESTO SECOIO** attenzione alla diversità al territorio alla sostenibilità, alla biodiversità

- Limitare o eliminare additivi e conservanti;
- attenzione a limitare l'impronta carbonica e idrica della filiera vitivinicola

Distribuzione nella bacca dei composti polifenolici

(Combe, 1987)

QUALITA' E DIVERSITA' DEI VINI

- **✓ SOSTANZE FENOLICHE**
- **✓ EQUILIBRIO ACIDO**
- **✓ PRECURSORI DI AROMA**

PROGETTO DI VINIFICAZIONE

Fattori della.....diversità dei vini

tecnologici

ambientali

genetici

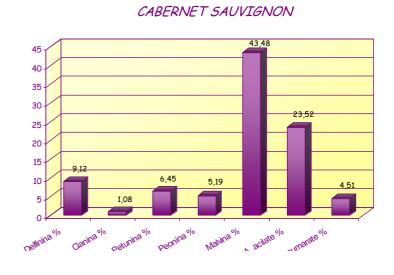
Percezione della differenza e della qualità

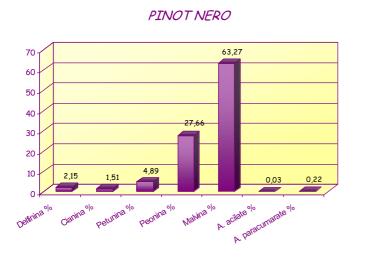
I FATTORI GENETICI

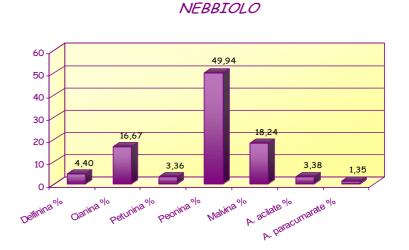
I FATTORI AMBIENTALI

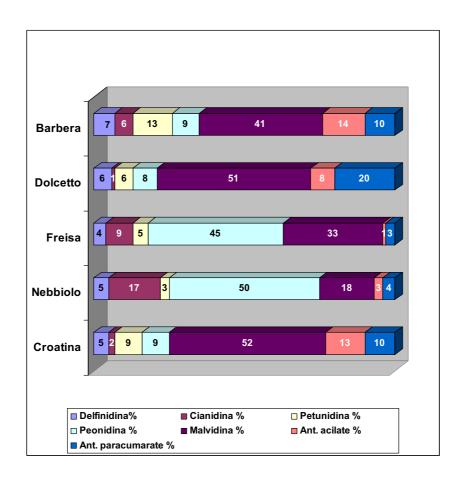
.....verso il futuro....

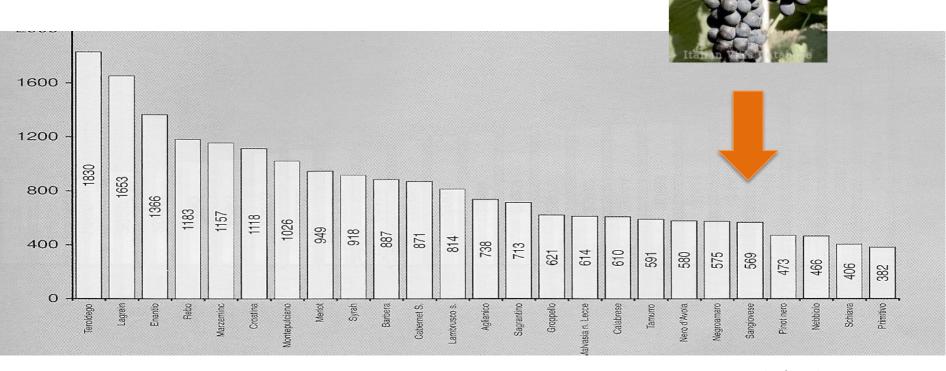
Ma cosa si intende Per azienda innovativa?

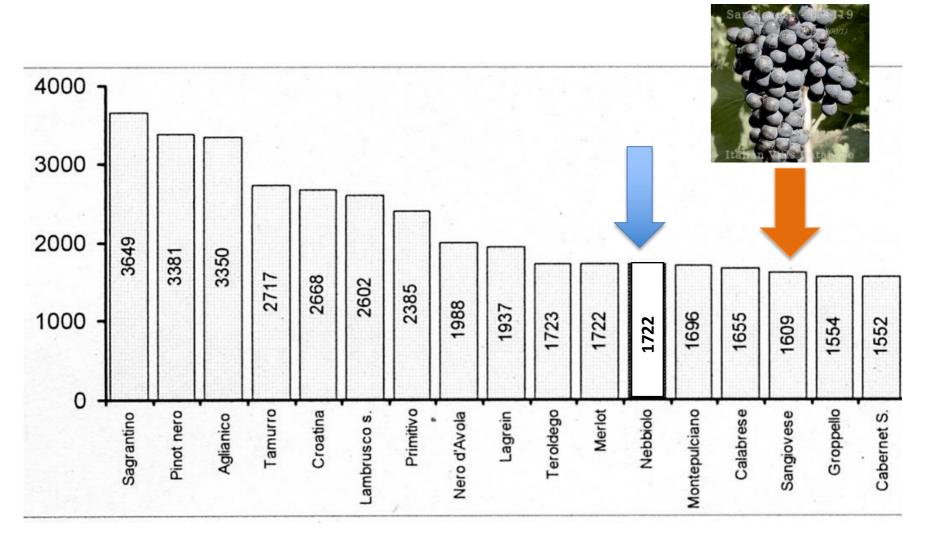

- Quella che dispone delle attrezzature più moderne?
- Quella che vende nei mercati più lontani?
- Quella che applica le tecniche biologiche?


NO! CERTAMENTE É

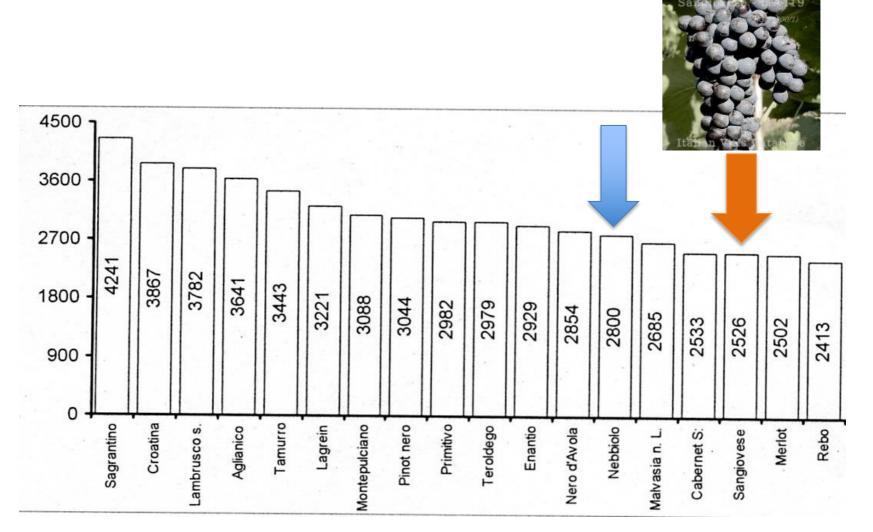

QUELLA CHE APPLICA UN ALTO CONTENUTO
DI CONOSCENZE


Confronto profili antocianici

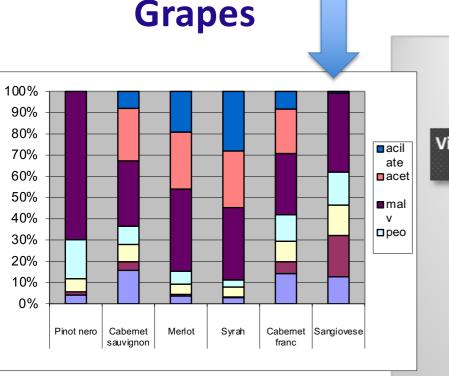


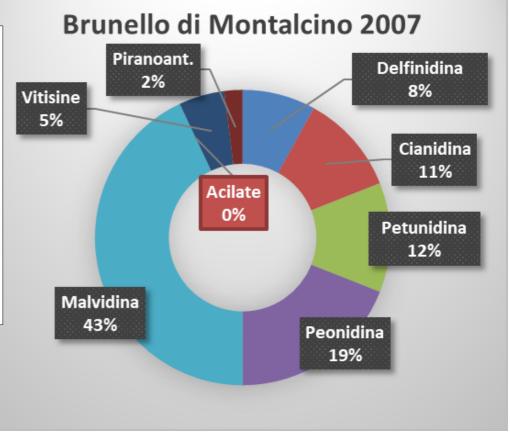


Grape extractable anthocyanins (mg/kg grapes)



Mattivi et al. L'Enologo 2003


Grape extractable oligomeric tannins (mg/kg grapes)


Grape extractable polimeric tannins (mg/kg grapes)

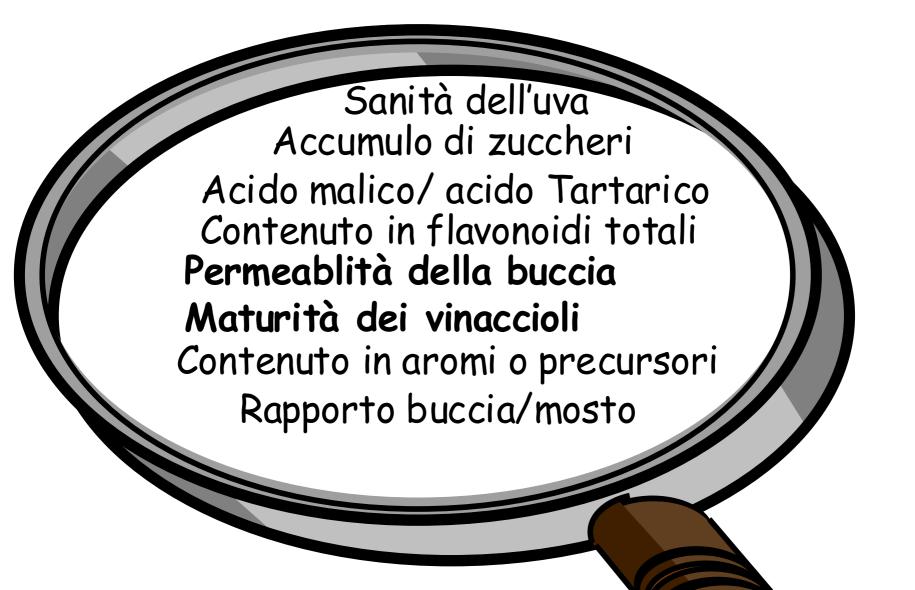
Anthocyanin profile of grape and wines

Brunello di Montalcino, anthocyanins profile (wines)

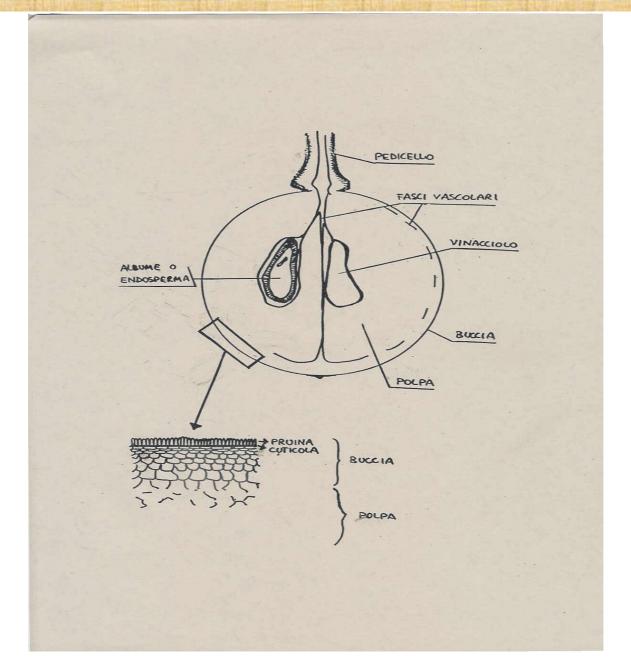
Prezzo (€/hL) di rossi DOC e DOCG italiani vintage 2019

DO wines	€/HI	
Amarone della Valpolicella DOCG 800		
Barbaresco DOCG	510	
Barbera d'Alba DOC	210	
Barbera d'Asti DOCG	145	
Barbera del Monferrato	DOC 115	
Barolo DOCG	760	
Brunello di Montalcino	DOCG (1,085	
Chianti classico DOCG	283	
Dolcetto Alba DOC	140	
Etna DOC	178	
Grignolino d'Asti DOC	130	
Nebbiolo d'Alba DOC	250	
Piemonte DOC Barbera	115	
Teroldego Rotaliano DO	C 195	
Trentino merlot DOC	155	
Romagna Sangiovese Do	DCG 102	
Valpolicella DOC	234	

ISMEA and CCIAA Verona


Brunello di Montalcino

technological parameters


Parameters	Minimo da disciplinare	Valori medi ultimi 5 anni
Alcohol content (% vol)	12,5	14,5 ± 0,5
Titratable acidity (g/L tartaric acid)	5,0	5,6 ± 0,5
Dry net extract (g/L)	24,0	30,1 ± 2,5
рН	Minimo-	3,49 ± 0,08

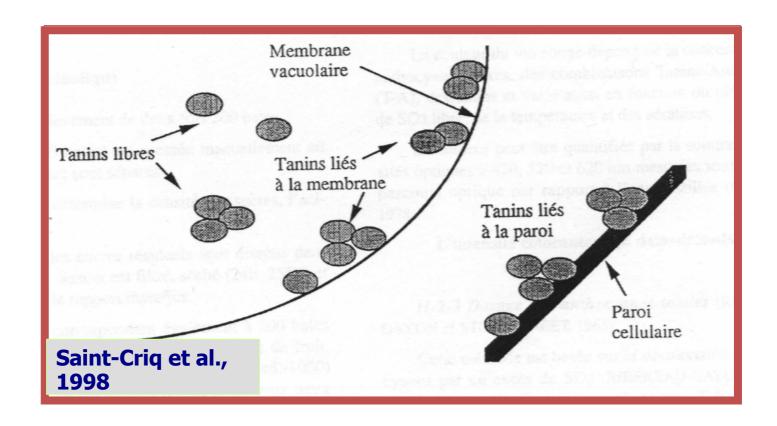
GESTIONE DELLE UVE per Vinificazione dalla roccolta al tino di fermentazione

- CONTROLLO DELLA MATURITA' DELLE UVE
- RACCOLTA TRASPORTO DELLE UVE
- EVENTUALI TRATTAMENTI PREFERMENTATIVI
- LA SCELTA DI ADDITIVI E COADIUVANTI
- PIGIATURA E DIRASPATURA DELLE UVE

PRINCIPALI SOSTANZE FENOLICHE

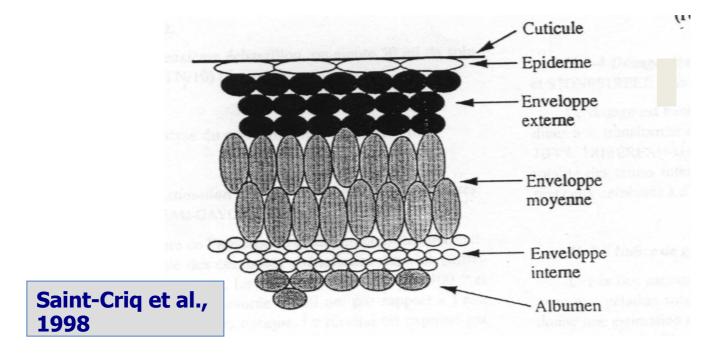
Antociani

(Quanti? Quali?)

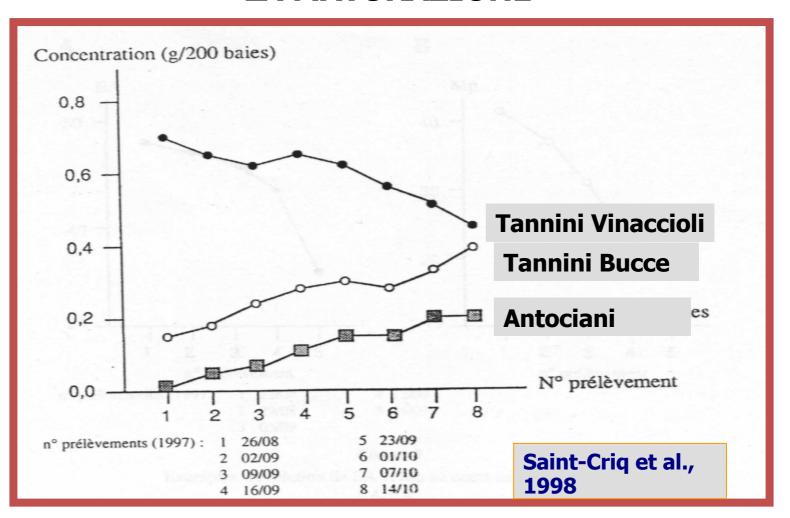

• Flavani

(Tannini)

(Quanti? Quali? Dove sono)


TANNINI delle BUCCE

- ✓ Grado di polimerizzazione medio elevato
- ✓ Grado di galloizzazione ridotto



TANNINI dei VINACCIOLI

- ✓ Grado di polimerizzazione medio basso
- ✓ Alto livello di monomeri e oligomeri
- ✓ Grado di galloizzazione elevato

EVOLUZIONE DEI POLIFENOLI DURANTE LA MATURAZIONE

MATURITA' FENOLICA

Stato di evoluzione dell'uva che consente l'estrazione:

della massima concentrazione di ANTOCIANI

di un adeguato contenuto di FLAVANI con caratteristiche sensoriali non aggressive

MATURITA' FENOLICA (Glories e Augustin, 1992)

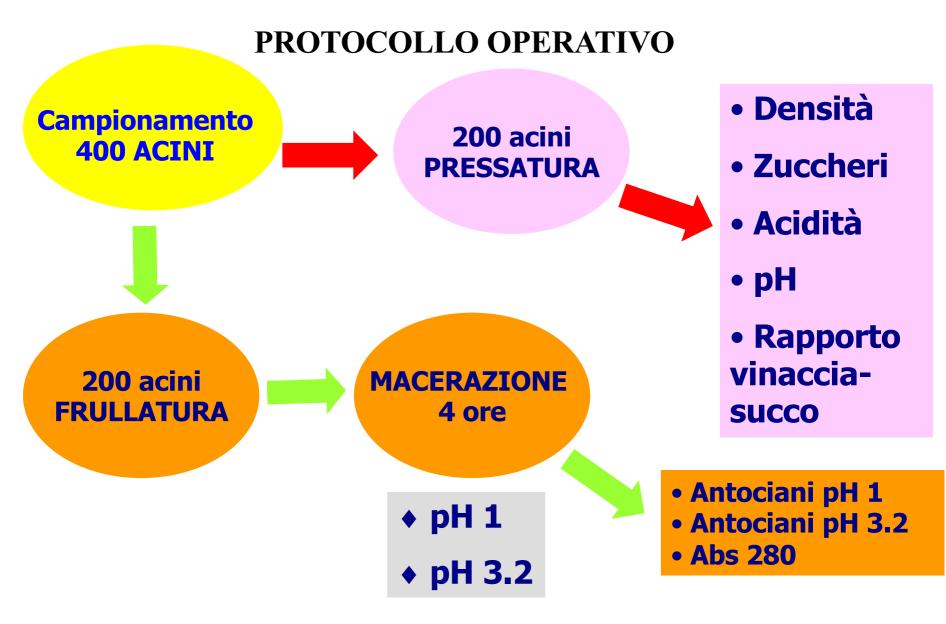
Definizione operativa:

- ✓ EA% indice di MATURITA' CELLULARE
- ✓ Mp% indice di MATURITA' dei VINACCIOLI

MATURITA' FENOLICA (Glories e Augustin, 1992)

Estrazione degli ANTOCIANI e dei TANNINI:

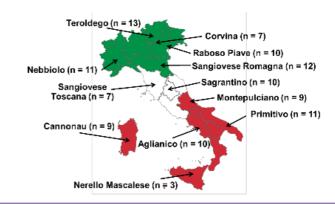
- I) In <u>condizioni estreme</u> (pH1) rottura della membrana proteofosfolipidica
- II) In condizioni blande (pH 3.2) azione degli enzimi dell'uva sulla membrana vacuolare


·CONTROLLO DELLA MATURITA' DELLE UVE

Indice di MATURITA' CELLULARE (Indice di estraibilità degli antociani)

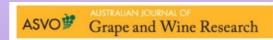
$$EA \% = 100 * (A1 - A3.2) / A1$$

Decresce con la maturazione dell'uva
Valori compresi tra 20 e 70 in funzione
della cultivar e dello stato di
maturazione


·CONTROLLO DELLA MATURITA' DELLE UVE

D-wines project: The diversity of tannins in Italian grape varieties

- 110 monovarietal red wines
- Vintage 2016
- Varieties which represent the 44% of red grapevine cultivated in Italy
- Sampled and analyzed in 2017


Food Research International Available online 9 March 2021, 110277

railable online 9 March 2021, 110277 In Press, Journal Pre-proof ③

Diversity of Italian red wines: a study by enological parameters, color, and phenolic indices

Simone GIACOSA ^a, Giuseppina Paola PARPINELLO ^b, Susana RÍO SEGADE ^a, Arianna RICCI ^b, Maria Alessandra PAISSONI ^a, Andrea CURIONI ^c, Matteo MARANGON ^a, Fulvio MATTIVI ^d, ^a, Panagiotis ARAPITSAS ^a, Luigi MOIO ^c, Paola PIOMBINO ^c, Maurizio UGLIANO ^a, Davide SLAGHENAUFI ^a, Vincenzo GERBI ^a, Luca ROLLE ^a ^a, Sa, Andrea VERSARI ^b

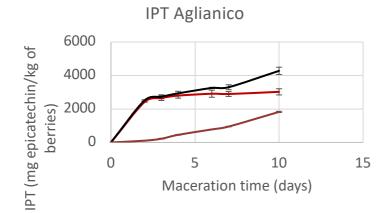
Original Article | 🙃 Full Access |

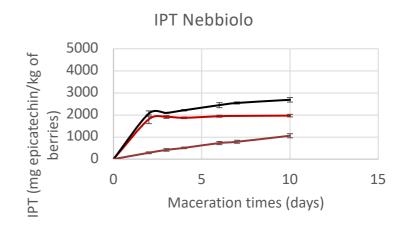
Preliminary sensory characterisation of the diverse astringency of single cultivar Italian red wines and correlation of subqualities with chemical composition

P. Piombino 🕿, E. Pittari, A. Gambuti, A. Curioni, S. Giacosa, F. Mattivi, G.P. Parpinello, L. Rolle, M. Ugliano, L. Moio

First published: 05 May 2020 | https://doi.org/10.1111/ajgw.12431 | Citations: 2

Seed contribution in polyphenols extraction (IPT) during simulated maceration (From the thesis of J. Torelli, unpublished data)




Aglianico and Nebbiolo

Simulated maceration (pH 3.4, 5 g/L tartaric acid, 10 days) at increasing ethanol level of:

- Skins
- Seeds
- Skins+seeds

hours	days	Ethanol concentration
0		0 %
48h	2	3 %
72h	3	6 %
96h	4	9 %
144h	6	12 %
192h	7	15 %
240h	10	15 %

Skins

Skins+seeds

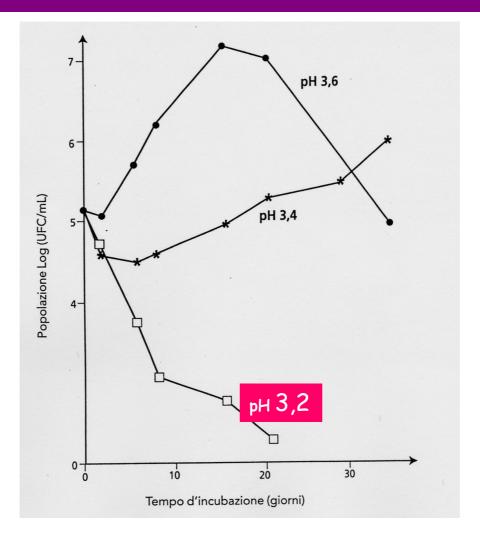
Seeds

I nuovi fattori di rischio per gli arresti di fermentazione

- · eccesso di zuccheri
- pH > 3,50
- ·carenza di azoto assimilabile
- ·carenza di vitamine
- ·carenza di ossigeno
- ·carenza di acidi grassi insaturi e steroli

La microflora negli arresti di fermentazione

Le interazioni microbiche


- . G e r b
- i·A inizio fermentazione consumano amminoacidi
- · liberano ac.grassi C6, C8, C10, C12 che alterano la membrana batterica
- ·A fine F.A. si lisano cedendo vitamine, basi azotate, peptidi amiinoacidi e ↑ polisaccaridi assorbenti gli acidi grassi. Possono favorire più o meno la FML

- producono glicosidasi e proteasi che agiscono sulla parete del lievito
- producono una proteina extracellulare che inibisce lieviti e altri batteri

Influenza del pH sull'evoluzione di batteri lattici in presenza di lieviti in un mosto con 220g/L di zucch. (Lonvaud-Funel et al., 1988)

Rappresentazione grafica delle frazioni della solforosa nei vini



TABELLA 4 - CONCENTRAZIONE (mg / I) DI ANIDRIDE SOLFOROSA MOLECOLARE IN FUNZIONE DELLA SO₂ LIBERA E DEL pH (DA DELFINI, 1981)

SO ₂	рН												
LIBERA		2,9	3,0		3,2	3,3	3,4	3,5	3,6	3,7	3,8	3,9	4,0
(mg / l)	2,8			3,1									
5	0,46	0,38	0,33	0,24	0,19	0,16	0,12	0,10	0,08	0,06	0,05	0,04	0,03
10	0,93	0,75	0,61	0,49	0,39	0,31	0,25	0,20	0,16	0,13	0,10	0,08	0,06
15	1,39	1,13	0,91	0,73	0,59	0,47	0,37	0,30	0,24	0,19	0,15	0,12	0,10
20	1,86	1,50	1,21	0,98	0,78	0,63	0,50	0,40	0,32	0,25	0,20	0,16	0,13
25	2,32	1,88	1,51	1,22	0,98	0,78	0,62	0,50	0,40	0,32	0,25	0,20	0,16
30	2,78	2,26	1,82	1,46	1,17	0,94	0,75	0,60	0,48	0,38	0,30	0,24	0,19
35	3,25	2,63	2,12	1,71	1,37	1,10	0,87	0,70	0,56	0,44	0,35	0,28	0,22
40	3,71	3,01	2,42	1,95	1,56	1,25	1,00	0,80	0,64	0,51	0,40	0,32	0,26
45	4,18	3,38	2,73	2,20	1,76	1,40	1,12	0,90	0,71	0,57	0,45	0,36	0,29
50	4,64	3,76	3,03	2,44	1,95	1,56	1,25	1,00	0,79	0,63	0,50	0,40	0,32